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A SLOPE MODIFICATION METHOD FOR 
SHALLOW WATER EQUATIONS 
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SUMMARY 
A slope modification method is proposed for non-oscillatory schemes based on the Lax-Friedrich solver. 
The modified scheme is proved to be total-variation-diminishing (TVD) and second-order accurate. Ap- 
plication of the scheme to the shallow water equations produces sharp profiles for shocks and achieves high 
accuracy in the smooth regions of the solution. 
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1. INTRODUCTION 

In this paper we consider numerical approximations to weak solutions of hyperbolic conserva- 
tion laws of the form 

u, + [f(u)lx = 0, - a3 < x < a3, t > 0, (14 

u(x,  O)= u&). (1b) 

with the initial condition 

The solution of the above problem may develop discontinuities even though u&) is a smooth 
function. In recent years much interest has been shown in developing numerical schemes of higher 
accuracy which give sharp profiles for the discontinuities. 

Harten' introduced high-resolution total-variation-diminishing (TVD) schemes and many 

If 04 denotes the numerical approximation to problem (1) at (x i ,  t,,), x j= jAx ,  t,,=nAt, then the 
made further contributions to the development of them. 

finite difference scheme in conservation form approximating (1) can be written as 

(24 u ? + l -  n 
j - v j - l ( f j+ 1/2 -fj- 1/2), 

where 1 = At/Ax is the CFL number and fj+ is the numerical flux function of 2k variables, 

fi+ 1/2 = f ( U ? - k +  1 ,. . 9 Vjn+k),  

which is consistent with (1) in the sense that 

f ( v ,  v, . * * Y v)=f(u) .  

The total variation of any grid function {vjn) is defined to be 
m 

TV(V")= 1 Ivj+l-vjnl. 
j =  - m 
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A scheme in the form (2a) is said to be TVD if it satisfies at each time step 

TV(u"+')<TV( u"). (3b) 
Recently, Nessyahu and Tadmor4 have constructed high-resolution central difference schemes 

which are proved to be TVD. The Lax-Friedrich solver is used as the building block. The 
simplicity of the schemes lies mainly in the fact that they do not require solving any Riemann 
problems. An artificial compression method for non-oscillatory schemes has been developed by 
Yang' which greatly improves the resolution of the discontinuities. 

The main aim of this paper is to incorporate the work of Nessyahu and Tadmor4 andYang' to 
obtain a more accurate TVD scheme which will sharply resolve the discontinuities and will also 
be simple to implement. In Section 2 we describe the high-resolution central difference schemes. 
In Section 3 we present the slope modification method. Section 4 extends the method to systems 
of conservation laws. Section 5 gives the application of the method to the shallow water equations 
and a discussion of the results. Conclusions are drawn in Section 6. 

2. HIGH-RESOLUTION CENTRAL DIFFERENCE SCHEMES 

The staggered form of the Lax-Friedrich scheme4 approximating (1) -is given by 

v j +  1 / 2 ( t +  A t ) = + ( v j +  u j +  l ) - l { f C u j +  1 ( t ) I - f C v j ( t ) I } *  (4) 

It is equivalent to a recipe for solving a sequence of Riemann problems by approximating the 
solution at time level t by piecewise constants over cells of width A x = x j +  1 1 2 - x j - 1 / 2  in the form 

V ( X ,  t ) = ~ j ( t ) ,  x j -  112 G x  < x j +  112 * (5) 
At time level t + A t  

At , u j , u j + l  3 X j < X < X j + l ,  (6) ) X - X j +  112 ( U ( X ,  t + A t )  = R 

where R is the Riemann solver. When the solution is projected back on the space of piecewise- 
constant grid functions and integrated over a staggered grid, we also get 

The disadvantage of scheme (4) is that it has excessive numerical viscosity. In order to compensate 
this, it is proposed4 to formulate the Riemann problems by approximating the solution at time 
t with piecewise-linear functions as follows. 

Then 
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where GR represents the generalized Riemann solver. The second-order accuracy is governed by 
the following choice of the numerical derivative uJ/Ax: 

a 
AX ax 

u)=- u ( x = x ~ ,  t )+  AX). 
1 - 

Integrating (9) over the staggered grid using the midpoint rule, we obtain 

Here u(xj, t + At/2) may be approximated by Taylor expansion as 

~ ( x j ,  t + At/2) = ~ j (  t ) - -t ,If;, (1lb) 

where f j  is the numerical flux derivative satisfying a condition of the form (10). Thus the scheme 
takes the form 

~j ( t+At /2)=~j ( t ) -$I f ) ,  ( 124 

(12b) 

(W 
u j +  1/2(t+At)=3Cuj(t)+uj+ l(t)I -d(gj+ 1 -gjh 

gj=f [ ~ j (  t + At/2)] + (l/f3,I)~). 

3. SLOPE MODIFICATION METHOD 

The spurious oscillations in the numerical solutions are reduced if (12) is made to satisfy the TVD 
property. The numerical derivatives are chosen4 as 

O <  u;sgn(x)<const, IMM {Auj+ 1/2, h j -  1/2}  I, 

MM 1x9 Y } = 3 Csgn(x) + sgn( Y ) l  min { I 4, I Y I}. 

(134 

(13b) 

where A u j + 1 ~ 2 = u j + l - u j  and 

The numerical flux derivatives are chosen similarly so that scheme (12) is TVD. 
A modification is suggested in the choice of the slopes u; and fj’ which enables the scheme to 

achieve high resolution of discontinuities while maintaining the TVD nature. On the basis of the 
work of Yang’ we choose u )  as 

u)=MM{Auj+l/2~ A ~ j - l / 2 } + 2 M M ( ~ j M M { ~ j + l / 2 ,  dj-1/2}9 MM{Bj+1/29 Bj-1/2}}9 (14) 

where pj are positive constants and 

dj- 1/2 = Auj- 1/2 - f( MM {Auj+ 1 / 2 7  Auj- 1/2} + MM {Auj- 1 / 2 7  Auj- 312 11, 
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Lemma 

Scheme (12) is TVD if the modified numerical flux gj given by (12c) satisfies the generalized 
CFL condition 

Proof 

From (16) it follows that the terms in parentheses on the RHS are positive and TVD follows from 

TV[ ~ ( t  + At)] =I Ivj+ 1p(t + At) - ~ j -  1p(t + At)[ < TV[ ~(t)] .  
j 

Theorem 

Let u; and fj’ be chosen as in (14) and (15) respectively. Let 

A max I a(vj) I < q 
with 

{ [4 + 4( 1 + 2pj) - (1 + 2~j)’] ‘I2 - 2) 
1 

“2(1+2Pj) 

hold. Then scheme (12) is TVD. 

Pro05 It is sufficient to prove that (16) holds. 

Using (1 5),  (1 7a) and (1 8 b), we get 
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With the above bounds (Ha) reduces to 

where 

v (47/2) (1 + 2pj)I + 4 (1 + 2pj) < t 
has the solution (17b); hence the proof. 

Remarks 

1. The range of pi for which q > O  is given by O < p j <  1.5. 
2. When p j=O,  V > = M M { A V ~ + ~ ~ ~ , A V ~ - ~ ~ ~ } ,  which corresponds to the case constu=l in the 

choice of 0s". 

4. EXTENSION TO SYSTEM OF CONSERVATION LAWS 

In this section we consider the extension of the method described in Sections 2 and 3 to the system 
of hyperbolic conservation laws 

U,+[F(U)lX=O, - ~ < x < o o ,  t > O ,  (194 

with the Riemann initial conditions 

Here U(x, t )  is the N-vector 

u =  [UI(X, t ) ,  7 * 9 %dx, 01' 
and F(U) is the flux vector 

F(U) = [fl(U), * * . ,fN(U)lT. 

System (19a) can also be written as 

U, + A(U)U, = 0, 

where A(U) is the Jacobian matrix given by 

A m , r ( U ) = ~ ,  a f m  rn, I =  1,2,. . . , N. 

Let the numerical approximation to system (19) at the grid point xi be given by the vector 
T Uj=(uj,l,* * * , u j . ~ )  * 

Let Uj+l/2 denote some average of Uj and Uj+l .  A particular average due to Roe6 can be 
considered and the averaged Jacobian Aj+ 1/2 = A(Uj, Uj+ 1) satisfying 

F(Uj+ i)-F(Uj)=Aj+ 1/2(Uj+ I -Uj) 

can be used to incorporate the characteristic information into the scheme, which improves the 
resolution. 
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Let a!+ 1/2 denote the eigenvalues of Aj+ and R!, 1/2  (Lt+ denote the corresponding right 
(left) eigenvectors for k = 1, . . . , N. The vector AUj+ ljz can be written as a linear combination of 
Rjk+1/2 as 

(214 

a5+1/2=L5+1/2AUj+1/2, k = l , 2 , .  . . , N. (2W 

AUj+1/2=C ajk+1/2Rjk+1/2, 
k 

where 

Following (21), the characteristic-wise choice of the numerical derivatives can be accomplished 
analogously to (14) and (15) as 

Uj=C ( M M { ~ ~ + I / z ,  a;- I / Z }  +2  MM{ PjMM{e:+ 1/29 0;- I / z ) ,  MM{v;+1/2, vj”- 1/2}})Rf, (22) 
k 

where 
k 0;- 1/2 =aj- 1/2 -3(MM{ajk+ 1/23 ajk- 1/2 1 + MM{a;- 1/23 ajk-3,2}), 

Vjk-i/z=aj-i/z-~MM(ar+i/z, k a;-i/z}, 

Equipped with the vector of numerical derivatives Us and Fj, scheme (12) can be extended to the 
system of equations as 

Uj(t + At/2) = Uj(t) -$LF>, 

Uj+ l/z(t+At)=3CUj(t)+Uj+ l(t)I-L(Gj+ 1 -Gjh 
Gj=F[Uj( t + At/2)] + (1/8L)U). 

(244 

(24b) 

(244 

5. APPLICATION TO SHALLOW WATER EQUATIONS 

The shallow water equations in one-dimension are given in the conservation form 

where S is the cross-section of the flow, Q = S V is the momentum along the X-direction, V is the 
velocity of the flow and P ( S ) = S z  is the pressure effect. 

The Jacobian matrix for system (25), 

A( U )  = [2s”, :yl’ 
has the eigenvalues (a’, a’)= ( V -  C ,  V +  C ) ,  where C denotes the local speed given by J(2S). The 
right eigenvectors 

1 and R2=[ v+c]  1 
R’=[ v -c ]  
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form the matrix R = [ R’, R2], which has the inverse 
1 v+c - 1  R - l = -  [ l]. 2c c -v  

The left eigenvectors are the rows of R-’. Roe’s average for (25) is given by 

o . o ~ l , I 1 l  I ( ’ , ,  ( ,  
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Figure 1. Slope modification method 
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Figure 2. Nessyahu and Tadmor’s scheme 
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Figure 3. Yee’s scheme 

Numerical results 

Solutions are obtained using scheme (24) for the shallow water equations (25). The initial 
conditions are taken as 

SL = 0.597, S R  = 0.04 166, QL = 0, QR = 0, 
for O <  x < 1 with xo =0.5. The constants p j  are chosen equal to 1.45 for all j. Results are obtained 
at time t=0.2 using a grid of 200 points along the X-direction. For comparison we have also 
computed the same problem using two other TVD schemes due to Yee3 and Nessyahu and 
Tadmor? The latter scheme corresponds to our scheme (24) with p j  = 0 for all j. The results are 
shown in the form of graphs (Figures 1-3). The exact solutions are indicated by symbols, the 
approximate solutions by full lines. 

6. CONCLUSIONS 

From the numerical results it is noted that the slope modification method produces sharp profiles 
for the discontinuities as compared to the other methods. While the schemes due to Yee3 and 
Nessyahu and Tadmor4 fail to locate the shock exactly, the results for scheme (24) are indis- 
tinguishable from the exact solution. The computational complexity is comparable with that of 
the other two schemes, since all of them are free of Riemann solvers. 
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